
University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO EXAMINATION 3

Directions. Do both problems (weights are indicated). This is a closed-book closed-note exam
except for three 8 1

2 × 11 inch sheets containing any information you wish on both sides. You are free
to approach the proctor to ask questions – but he will not give hints and will be obliged to write
your question and its answer on the board. Roots, circular functions, etc., may be left unevaluated
if you do not know them. Use a bluebook. Do not use scratch paper – otherwise you risk losing part
credit. Cross out rather than erase any work that you wish the grader to ignore. Justify what you
do. Box or circle your answer.

1. (50 points)
A satellite is in elliptical orbit about the earth
(neglect any effects of the moon or sun). Its
radius r is proportional to

r ∝ 1
1 + ε cos θ

,

where θ is the azimuthal angle of the orbit, and
ε is the ellipse’s eccentricity. For simplicity take
rmax = 3rmin, so that ε = 1

2 .
(a) (10 points)
Using any relevant theorem(s), write down the
ratio −〈T 〉/〈U〉, where T and U are the satel-
lite’s kinetic and potential energies, and 〈〉 is the
time average over one full orbit.
Solution:
According to the Virial Theorem, if the (attrac-
tive) force varies as r−n,

〈T 〉 = −n − 1
2

〈U〉 = − 1
2 〈U〉 .

(The above earns full credit. If you’re lacking
the details of the Virial Theorem, you need only
recall that −〈T 〉/〈U〉 depends only on the expo-
nent of r in the force law. Consider a circular
orbit in a −k/r2 force field:

mv2

r
=

k

r2

1
2mv2 = 1

2

k

r
T = − 1

2U .

On average, this is true also for an elliptical or-
bit, since the force law is the same.)

(b) (20 points)
When r = rmax, what is −T/U? [Hint: the
satellite’s total energy is inversely proportional
to the semimajor axis of its orbit. If you don’t
remember the constant of proportionality, you
can deduce it by considering the special case of
a circular orbit.]
Solution:
Take a to be the ellipse’s semimajor axis. It is
related to rmax by

2a = rmin + rmax

= rmax

(
1
3 + 1

)
a = 2

3rmax .

If the (attractive) force is k/r2, the satellite’s
total energy is

E = − k

2a
.

(Lacking the constant of proportionality −k/2,
you may deduce it from the circular orbit con-
sidered in the solution to (a):

E = T + U

= −1
2U + U

= 1
2U

= − k

2r
,

when a reduces to r in that special case.) Solving
1



for the kinetic energy at r = rmax,

T = E − U

= − k

2a
− −k

rmax

= − k

2a
− −k

3
2a

=
k

6a
T

U
=

k/6a
−2k/3a

T = − 1
4U .

(c) (20 points)
When r = rmax, a rocket on board the satel-
lite fires a very brief burst, consuming fuel of
negligible mass. Immediately after the burst,
the satellite’s total energy (normalized to zero
at r = ∞) changes by a factor C, but its direc-
tion of motion remains the same; the satellite’s
orbit becomes circular. Solve for C.
Solution:
Immediately after the rocket fires, the satellite is
still at the same radius (otherwise it would un-
dergo infinite acceleration in the limit that the
burst duration vanishes). Therefore, since it is
now in circular orbit,

E′ = − k

2rmax
.

The original total energy was

E = − k

2a
.

Their ratio is

C =
E′

E
=

a

rmax
= 2

3 .

Note that the total energy is reduced in magni-
tude by the rocket burst. However the gain in
total energy is positive because the total energy
remains negative in sign.

2. (50 points)
When undriven, an undamped oscillator (i.e. a
mass on a spring) satisfies the equation

ẍ+ ω2
0x = 0 ,

where ω0 is a positive constant. For t < 0 it is
at rest at the origin: x(t < 0) = 0.
(a) (20 points)
For this part, suppose that the mass is given a
quick tap at t = 0, i.e.

x(t = 0+) = 0
ẋ(t = 0+) = v0 ,

where v0 is a positive constant. Solve for x(t)
for t > 0. [Hint: your solution should be equiva-
lent to v0 G(t), where G(t) is the Green function
for this oscillator.]
Solution:
The general solution is

xh = B cos (ω0t+ β) .

Applying the initial conditions at t = 0,

0 = xh(0)
= B cosβ

⇒ β = π
2

⇒ xh(t) = −B sinω0t

v0 = ẋh(0)
= −Bω0

⇒ B = − v0

ω0

⇒ xh(t) =
v0

ω0
sinω0t .

Alternatively, taking advantage of the hint, you
may obtain the same result as the limit of the
Green function for the underdamped oscillator
as γ → 0.
(b) (30 points)
For this part, suppose instead that the mass is
given a steady push that begins at t = 0 and
lasts for one period. That is, suppose that the
force F on the mass, divided by the mass m, is
such that F/m = a(t), where

a(t) = a0 (0 < t < 2π
ω0
)

= 0 otherwise ,
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where a0 is a positive constant. Solve for x(t)
after the push is finished, i.e. for t > 2π/ω0.
Solution:
Method 1. Simple argument.
During the push, irrespective of details that de-
pend on initial conditions, the motion must be
periodic with period 2π/ω0. Therefore, after one
period, the system must revert to its initial con-
ditions x = 0, ẋ = 0. Given these conditions at
t = 2π/ω0, after the driving force has vanished
the mass must remain in the same conditions,
i.e. at rest at the equilibrium position x = 0.
Method 2. Green function.
Using the solution xa(t) and the hint from (a),
the Green function for this oscillator is

G(t) =
xa(t)
v0

=
sinω0t

ω0
(t > 0)

= 0 otherwise

G(t − t′) =
sinω0(t − t′)

ω0
(t > t′)

= 0 otherwise .

The Green function yields an integral equation
for x(t):

x(t) =
∫ ∞

−∞
dt′ a(t′)G(t − t′)

=
∫ t

−∞
dt′ a(t′)

sinω0(t − t′)
ω0

x
(
t > 2π

ω0

)
=

∫ 2π/ω0

0

dt′ a0
sinω0(t − t′)

ω0
.

For any value of t > 2π
ω0
, this is proportional

to the integral of a sinusoidal function over one
period, which must vanish. Therefore

x
(
t > 2π

ω0

)
= 0 .

Method 3. Brute force solution of equations of
motion.
During the push, the equation of motion is

ẍ+ ω2
0x = a0 .

The general solution is the sum of xh and xp,
where

xh = B cos (ω0t+ β)

xp =
a0

ω2
0

.

Applying the initial conditions at t = 0, ,

0 = ẋh(0) + ẋp(0)
= −Bω0 sinβ

⇒ β = 0
0 = xh(0) + xp(0)

= B cosβ +
a0

ω2
0

= B +
a0

ω2
0

⇒ B = − a0

ω2
0

xh(t) + xp(t) =
a0

ω2
0

(1− cosω0t)

x(t) =
a0

ω2
0

(1− cosω0t) .

From this solution we deduce that, at t = 2π
ω0
,

x
(
t = 2π

ω0

)
= 0

ẋ
(
t = 2π

ω0

)
= 0 .

After the push, the equation of motion is

ẍ+ ω2
0x = 0 .

The general solution is

xh = A cos (ω0t+ α) .

Applying the initial conditions at t = 2π
ω0
, i.e. the

final conditions of the push,

0 = x
(
t = 2π

ω0

)
= A cos (2π + α)
= A cosα

⇒ α = π
2 or A = 0

0 = ẋ
(
t = 2π

ω0

)
= −Aω0 sin (2π + α)

⇒ α = 0 or A = 0 .

The only mutually consistent way to satisfy both
boundary conditions is A = 0, so

x
(
t > 2π

ω0

)
= 0 .
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